
S1000D XSL Stylesheets

README

Table of Contents

References .. 1
Introduction .. 11
Using the S1000D XSL stylesheets ... 22
Requirements ... 33
Configuration .. 44
Configuring the build .. 44.1
Catalog configuration ... 54.2
Graphics entity map configuration .. 54.3
Caveats .. 64.3.1
Cranking the handle ... 65
Future work .. 86
Acknowledgements .. 87
Warranty ... 88

List of Tables
References ... 11
Configurable build properties ... 42

References

Table 1 References

TitleData Module/Technical publication

None

Introduction1
S1000D 1 is an XML based documentation standard for technical publications. Originally created
by a conglomerate of defence companies for documenting military hardware, it is now also being
used by civilian aerospace companies. S1000D XSL Stylesheets 2 is a set of XSL stylesheets
that can be used to transform an S1000D document (authored as a bunch of XML files) into a
PDF file for viewing and printing.

The specification is still evolving and has already has gone through quite a few revisions. The
current released issue is 4.0.1 and 4.1 is due sometime soon. The specification decrees not only
how a document's content is to be structured but also how the resulting publication should look.
The fact that the current issue runs to more than 2750 pages gives an indication of the complexity
of the standard. Furthermore, companies that create S1000D documents can apply company
specific "Business Rules" that affect both the information content and/or presentation style of the
resulting document.

1 http://www.s1000d.org
2 http://github.com/smartavionics/S1000D-XSL-Stylesheets

S1000DXSL-A-00-00-00-00A-040A-AApplicable to: All

2011-01-30 Page 1Unclassified

S1000DXSL-SMART-00001-00UnclassifiedSMART
AVIONICS

T
hi

s
is

 a
 d

ra
ft

co
py

 o
f i

ss
ue

 0
01

-0
1.

 P
rin

te
d

20
11

-0
1-

30
 1

9:
40

.

P
ro

du
ce

d
by

: S
m

ar
t A

vi
on

ic
s

Lt
d.

http://www.s1000d.org
http://github.com/smartavionics/S1000D-XSL-Stylesheets
http://www.s1000d.org
http://github.com/smartavionics/S1000D-XSL-Stylesheets

S1000D authoring/publishing systems are available but tend to be geared towards the larger
companies that are producing 10,000's of pages of documentation. So at the moment, if you want
to produce a modest sized S1000D document you have to either invest (rather heavily) in an
authoring/publishing system or pay someone who has the capability to produce S1000D documents
to create the document for you. Either way, it's expensive. The goal of the S1000D XSL stylesheet
project is to provide a low-cost (in terms of the software cost) means to create page-oriented output
(PDF files) from S1000D compliant XML source files.

The S1000D standard describes how the XML data modules that make up a given publication's
content are stored in a "Common Source DataBase" (CSDB). They don't actually say how the
database is implemented or how the data modules are authored and stored in the database but
the basic idea is that when a publication is to be created, the required modules are extracted from
the database and formatted along with some (possibly automatically generated) front matter to
produce the desired result. The content of a given publication is determined by one or more
publication modules which reference the data modules to be included.

Commercial S1000D publishing systems provide some form of Content Management System
(CMS) to act as the CSDB and that would provide versioning and multi-author access facilities.
For a small documentation project, the complicated and expensive CMS can be replaced with a
decent Software Configuration Management (SCM) system and the modules stored simply as flat
files. As described in more detail below, the S1000D XSL stylesheets simply require that a
publication's data modules and publication module are combined to make a single XML file which
is then processed - how those modules are stored and retrieved is not really relevant.

Using the S1000D XSL stylesheets2
To create a PDF file from a publication module and one or more data modules, you need to put
together a simple top-level XML file that includes all of the desired content within a root element.
The root element tag must be publication.

Here is the top-level file used to create this README document:

<?xml version="1.0" encoding="UTF-8"?>
<publication xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="PMC-S1000DXSL-SMART-00001-00.xml"/>
 <xi:include
 href="DMC-S1000DXSL-A-00-00-00-00A-040A-A_001-00_EN-GB.xml"/>
</publication>

The order in which the data modules appear in the document is specified by the publication module
so it doesn't matter how they are ordered in the publication element. If you don't specify a publication
module, you will still get a document produced but the order of the data modules is then determined
by their ordering in the publication element3.

Generating a PDF file from this top-level XML file is a three stage process:

1 Transform the S1000D XML into DocBook XML using the s1000dtodb stylesheet.

2 Transform the DocBook XML into Formatting Objects (FO) XML using the dbtofo stylesheet.

3 Process the FO XML using a formatting program such as fop or xep to produce the PDF file.

3 When a publication module is not specified, the publication code that appears on the RHS of the page headers will default to UNKNOWN PUBLICATION
unless you pass in the desired text to the XSLT processor using the property publication.code.

Applicable to: AllS1000DXSL-A-00-00-00-00A-040A-A

UnclassifiedPage 2 2011-01-30

SMART
AVIONICS

UnclassifiedS1000DXSL-SMART-00001-00

P
ro

du
ce

d
by

: S
m

ar
t A

vi
on

ic
s

Lt
d.

T
hi

s
is

 a
 d

ra
ft

co
py

 o
f i

ss
ue

 0
01

-0
1.

 P
rin

te
d

20
11

-0
1-

30
 1

9:
40

.

An XSLT version 1 compatible processor is required to carry out the transformations. The
stylesheets have been tested with the xalan and saxonpe processors. An ant build file is provided
that will use either of those programs to do the transformations and either fop or xep to do the
formatting. Once this process has been configured, the document can be rebuilt anytime by simply
running ant.

Requirements3
To use the S1000D XSL stylesheets, you need the following items:

S1000D XSL stylesheets Obtain from the github S1000D-XSL-Stylesheets 4 repository.

The downloads button on the RHS of the github page can be
used to download an archive of the latest revision. Better still,
install git 5 and then clone the repository onto your local machine
so that the latest version is only a "git pull" away.

Docbook XSL stylesheets Obtain from SourceForge 6.

The dbtofo stylesheet is just a customisation layer on top of the
standard DocBook XSL stylesheets so you need those
stylesheets to use dbtofo. Get the namespace aware version,
e.g. docbook-xsl-ns-1.76.1 and unpack the distribution in the
top-level directory of the S1000D XSL tree.

An XSLT processor If you're going the Java route, there's several to choose from -
known to work are:

– Xalan2 7

– Saxon HE 8 or Saxon PE & EE 9

The open source version (he) of Saxon is fine but it doesn't
support the XSL extension currently used in the stylesheets
to resolve graphic file entities. If you use the commercial
editions of Saxon (saxon pe, saxon ee) then the extension
is supported. See Para 4.3 for more information on this.

A non-Java XSLT processor that is known to work is xsltproc
10

Xerces XML Parser Xerces2 Java 11 is required when using either the xalan or saxon
XSLT processors.

resolver.jar Again, only needed if you are using a Java XSLT processor. It
can be found in xml-commons-resolver-latest.zip 12.

4 https://github.com/smartavionics/S1000D-XSL-Stylesheets
5 git-scm.com
6 http://sourceforge.net/projects/docbook/files/docbook-xsl-ns/
7 http://xml.apache.org/xalan-j/
8 http://saxon.sourceforge.net/
9 http://www.saxonica.com/
10 http://xmlsoft.org/XSLT/xsltproc2.html
11 http://xerces.apache.org/
12 http://www.apache.org/dist/xml/commons/xml-commons-resolver-latest.zip

S1000DXSL-A-00-00-00-00A-040A-AApplicable to: All

2011-01-30 Page 3Unclassified

S1000DXSL-SMART-00001-00UnclassifiedSMART
AVIONICS

T
hi

s
is

 a
 d

ra
ft

co
py

 o
f i

ss
ue

 0
01

-0
1.

 P
rin

te
d

20
11

-0
1-

30
 1

9:
40

.

P
ro

du
ce

d
by

: S
m

ar
t A

vi
on

ic
s

Lt
d.

https://github.com/smartavionics/S1000D-XSL-Stylesheets
git-scm.com
http://sourceforge.net/projects/docbook/files/docbook-xsl-ns/
http://xml.apache.org/xalan-j/
http://saxon.sourceforge.net/
http://www.saxonica.com/
http://xmlsoft.org/XSLT/xsltproc2.html
http://xerces.apache.org/
http://www.apache.org/dist/xml/commons/xml-commons-resolver-latest.zip
https://github.com/smartavionics/S1000D-XSL-Stylesheets
git-scm.com
http://sourceforge.net/projects/docbook/files/docbook-xsl-ns/
http://xml.apache.org/xalan-j/
http://saxon.sourceforge.net/
http://www.saxonica.com/
http://xmlsoft.org/XSLT/xsltproc2.html
http://xerces.apache.org/
http://www.apache.org/dist/xml/commons/xml-commons-resolver-latest.zip

FO Processor There are numerous commercial products that will generate PDF
(and other formats) from XML FO input. The stylesheets have
been tested with XEP from RenderX 13 product.

A free alternative is Apache Fop 14. Version 1 works well with
the stylesheets but has some limitations:

– No table continuation titles when tables span multiple pages.

– No change bars.

Apache ant If you want to use the supplied ant build file, you need ant which
may well be available as a package on your system or it can be
obtained from Apache ant 15.

The ant build file needs to know where the various jars (xalan/saxon, xerces, resolver) reside so
it will make configuration easier if those jars are put into the same directory but it's not an absolute
requirement.

Configuration4

Note
This section assumes you are using ant with the supplied build.xml file.

Configuring the build4.1
Configuration mainly consists of setting those build parameters that you wish to change from the
default values. To do that, don't edit build.xml itself but, instead, edit build.properties. The most
important properties you can set are listed in Table 2.

Table 2 Configurable build properties

ValueRequired/OptionalProperty

Name of your top-level XML file without the .xml extension,
e.g. S1000DXSL-README

Requireddocname

Name of the top-level directory of the S1000D XSL
distribution. Can be a relative or absolute path name.

Requireds1000d.xsl.home

Name of the directory in which the jar files are stored. Can
be a relative or absolute path name - defaults to '.'

Optionaljars.dir

Name of the resolver jar file - defaults to
${jars.dir}/resolver.jar

Optionalresolver.jar

Name of the Saxon jar file - defaults to
${jars.dir}/saxon9he.jar

Optionalsaxon.jar

Name of the Xalan jar file - defaults to
${jars.dir}/xalan2.jar

Optionalxalan.jar

13 http://www.renderx.com/tools/xep.html
14 http://xmlgraphics.apache.org/ /
15 http://ant.apache.org

Applicable to: AllS1000DXSL-A-00-00-00-00A-040A-A

UnclassifiedPage 4 2011-01-30

SMART
AVIONICS

UnclassifiedS1000DXSL-SMART-00001-00

P
ro

du
ce

d
by

: S
m

ar
t A

vi
on

ic
s

Lt
d.

T
hi

s
is

 a
 d

ra
ft

co
py

 o
f i

ss
ue

 0
01

-0
1.

 P
rin

te
d

20
11

-0
1-

30
 1

9:
40

.

http://www.renderx.com/tools/xep.html
http://xmlgraphics.apache.org/ /
http://ant.apache.org
http://www.renderx.com/tools/xep.html
http://xmlgraphics.apache.org/ /
http://ant.apache.org

Table 2 Configurable build properties (continued)

ValueRequired/OptionalProperty

Name of the Xerces impl jar file - defaults to
${jars.dir}/xercesImpl.jar

Optionalxercesimpl.jar

Name of the XSLT processor to use (xalan or saxon) -
defaults to xalan

Optionalxsltprog

Name of the FO formatter to use (fop1 or xep) - defaults
to fop1

Optionalformatter

The actual command to be run to execute the FO formatter
- defaults are fop1 and xep respectively.

Optionalfop1.cmd xep.cmd

Catalog configuration4.2
For the XSLT processor to be able to find the DocBook stylesheets, the catalog file (catalog.xml)
in the S1000D XSL installation directory needs to have a suitable entry. The supplied file looks
like this:

<?xml version="1.0"?>

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">

 <nextCatalog catalog="docbook-xsl-ns-1.76.1/catalog.xml"/>
 <nextCatalog catalog="../catalog.xml"/>

</catalog>

The first nextCatalog element should reference the catalog in the DocBook XSL distribution. Make
sure that the pathname there matches where your DocBook XSL files are located.

Graphics entity map configuration4.3
S1000D documents reference all graphics through XML entities. At some stage in the processing,
the entity has to be mapped into a filename which is then passed through to the FO processor so
it can include the graphic in the output. Entities can be defined in a local document type definition
at the top of a module that uses them. Here's an example:

<!NOTATION cgm
 PUBLIC "-//USA-DOD//NOTATION Computer Graphics Metafile//EN">
<!ENTITY ICN-S1000DBIKE-AAA-DA53000-0-U8025-00525-A-04-1 SYSTEM
 "./illustrations/ICN-S1000DBIKE-AAA-DA53000-0-U8025-00525-A-04-1.CGM"
 NDATA cgm>

The first line declares cgm to be a type of external entity and the second line declares
ICN-S1000DBIKE-AAA-DA53000-0-U8025-00525-A-04-1 to be an entity of that type that
references a CGM graphics file at location
./illustrations/ICN-S1000DBIKE-AAA-DA53000-0-U8025-00525-A-04-1.CGM. So
now, within the data module content, you can use
ICN-S1000DBIKE-AAA-DA53000-0-U8025-00525-A-04-1 to specify that graphics file.

The XSLT processor is potentially capable of resolving the entity name into the file name but to
do so it must have seen the declarations shown above and for that to happen, it must be using a

S1000DXSL-A-00-00-00-00A-040A-AApplicable to: All

2011-01-30 Page 5Unclassified

S1000DXSL-SMART-00001-00UnclassifiedSMART
AVIONICS

T
hi

s
is

 a
 d

ra
ft

co
py

 o
f i

ss
ue

 0
01

-0
1.

 P
rin

te
d

20
11

-0
1-

30
 1

9:
40

.

P
ro

du
ce

d
by

: S
m

ar
t A

vi
on

ic
s

Lt
d.

validating XML parser. At this time, the build file is using a non-validating parser and so when the
XSLT processor resolves the graphics entity name it comes out null.Therefore, I have implemented
a simple XSL extension function that is used to resolve the graphics entity names.

The way it works is as follows: within the modules that wish to refer to a graphics file you declare
a suitable entity for the file - the type and value of the entity are not important as they will both be
ignored when the module is processed. Here's the declaration that is used within the PMC for this
document that declares the entity that gets used as the company logo in the page headers:

<!NOTATION anything SYSTEM "">
<!ENTITY publisher-logo SYSTEM "" NDATA anything>

This declares publisher-logo to be an entity which we can use within the module to specify a
graphics file - it gets used like this:

<logo>
 <symbol infoEntityIdent="publisher-logo" reproductionHeight="12mm"/>
</logo>

To achieve the desired result, we still have to specify somewhere that publisher-logo maps
into a particular file name (in this case the file is called smartavionics-logo.svg).This mapping
of entity names to file names is done with a simple property file called info-entity-map.txt
that contains one line for each graphics entity you want to resolve.The example file looks like this:

publisher-logo = smartavionics-logo.svg

If the property file cannot be found or an entity doesn't have an entry in the file, the entity name
is passed through as the file name unchanged, i.e. entity name 'foo' maps into 'foo'. The DocBook
stylesheets will automatically append a default file extension if a graphics file name has no
extension. The default is '.png' so entity 'foo' will become 'foo.png'.

Caveats4.3.1

– This is all rather experimental and could well change in the future.

– The S1000D standard specifies that all vector graphic files are in CGM format and all bitmap
graphic files are in TIFF format. Unfortunately CGM format is not supported by either of the
FO processors I have access to and so they cannot be used directly. Potentially, the publishing
system could convert CGM files to, say, SVG or EPS for inclusion in the document but as I
don't have any means of editing CGM files anyway this capability is not high on my list of
improvements.

– The Home Edition of the Saxon XSLT processor does not support the above mentioned
extension and so the entity name will get passed through unchanged as described above.

Cranking the handle5
Before processing, you need to check that the input is valid S1000D XML. If the input isn't valid,
expect big trouble. I strongly recommend using an XML aware editor that has validating capability.
I am currently using jedit (free) and oxygen (not-free) and many others are available16.

16 Emacs NXML mode would be usable if the S1000D xsd schemas were available as rnc schemas but I haven't yet succeeded in generating usable rnc files
from the xsd files.

Applicable to: AllS1000DXSL-A-00-00-00-00A-040A-A

UnclassifiedPage 6 2011-01-30

SMART
AVIONICS

UnclassifiedS1000DXSL-SMART-00001-00

P
ro

du
ce

d
by

: S
m

ar
t A

vi
on

ic
s

Lt
d.

T
hi

s
is

 a
 d

ra
ft

co
py

 o
f i

ss
ue

 0
01

-0
1.

 P
rin

te
d

20
11

-0
1-

30
 1

9:
40

.

Once the source is validated, it's just a matter of running 'ant' within the directory containing the
build.xml file.You can either do this from a command line or if you are using an editor like jedit
you can run the build from within the editor.

It is normal to get a few messages, here's some typical output (unfortunately, some of the lines
are long and I have had to wrap them):

Buildfile: build.xml

s1000d_to_db:

check.transform.required:

transform.using.xalan:
 [echo] Transforming S1000DXSL-README.xml to S1000DXSL-README-db.xml

db_to_fo:

check.transform.required:

transform.using.xalan:
 [echo] Transforming S1000DXSL-README-db.xml to S1000DXSL-README.fo
 [java] file:/home/smartavionics/S1000D/S1000D_xsl/docbook-xsl-ns-1.76.1/
fo/docbook.xsl; Line #318; Column #16; Making portrait pages on A4 paper
(210mmx297mm)

fo_to_pdf:

check.format.required:

format:

format.using.fop1:
 [exec] 28-Jan-2011 10:35:48 org.apache.fop.events.LoggingEventListener
processEvent
 [exec] WARNING: Font "Symbol,normal,700" not found. Substituting with
"Symbol,normal,400".
 [exec] 28-Jan-2011 10:35:48 org.apache.fop.events.LoggingEventListener
processEvent
 [exec] WARNING: Font "ZapfDingbats,normal,700" not found. Substituting
with "ZapfDingbats,normal,400".
 [exec] 28-Jan-2011 10:35:48 org.apache.fop.events.LoggingEventListener
processEvent
 [exec] WARNING: Line 1 of a paragraph overflows the available area by
802 millipoints. (See position 286:377)
 [move] Moving 1 file to /home/smartavionics/S1000D/S1000D_xsl/sample

build:

BUILD SUCCESSFUL
Total time: 18 seconds

S1000DXSL-A-00-00-00-00A-040A-AApplicable to: All

2011-01-30 Page 7Unclassified

S1000DXSL-SMART-00001-00UnclassifiedSMART
AVIONICS

T
hi

s
is

 a
 d

ra
ft

co
py

 o
f i

ss
ue

 0
01

-0
1.

 P
rin

te
d

20
11

-0
1-

30
 1

9:
40

.

P
ro

du
ce

d
by

: S
m

ar
t A

vi
on

ic
s

Lt
d.

If you use an S1000D element that is not yet implemented by the stylesheets you will get a message
like this:

Unhandled: publication/dmodule/content/faultReporting

and the element and its content will be copied through to the output verbatim and displayed in red.

Future work6
There's still much to do:

– Many elements in the S1000D schema are not yet implemented. I will be implementing
elements as and when I need them but if you want to use these stylesheets and need particular
elements implementing, let me know. Better still, if you know some XSL, have a go at
implementing the elements yourself (all contributions are welcome).

– No attempt has been made to support 'applicability'. I believe that the 4.1 issue of S1000D
will have something to say re the formatting aspects of applicability so I am holding off for a
while.

– At the present time, the generation of a title page is problematic. S1000D does not currently
support any markup to explicitly lay out the elements of a title page. I believe that this may
be addressed in 4.1 but in the meantime, one can "cheat" by directly embedding either FO
or DocBook elements in the S1000D modules and they will get passed through (thanks to the
power of XML namespaces!)

– At this time, if the document contains a "List of effective data modules" module (indicated by
the module having an infoCode value of 00S), the stylesheets will automatically generate
the content for the module from the data modules that are referenced by the PM. In the future,
other front-matter may well be automatically generated.

Acknowledgements7
This project has been made much easier by the efforts of other people and I would like to say
thanks to:

– The creators/maintainers of the DocBook XSL stylesheets and the associated documentation
- not only have I used those stylesheets as the basis of the formatting process but I have also
learnt a lot about XSL stylesheet writing by looking at that code.

– The creators/maintainers of the various open source tools that are used (xalan, xerces,
saxonhe, fop, etc.)

Warranty8
The file COPYING contains the full warranty and copyright information but the bottom line is that
these stylesheets (and any other files in this package) are supplied with no warranty as to fitness
of purpose, etc. In particular, the stylesheets are not guaranteed to produce output that is free
from errors or omissions. So if you write a document that states something like "ensure that the
fuel tank contains at least 10,000L of fuel" and it comes out saying "ensure that the fuel tank
contains at least 10L of fuel", Smart Avionics Ltd. will not be liable for the consequences.

End of data module

Applicable to: AllS1000DXSL-A-00-00-00-00A-040A-A

UnclassifiedPage 8 2011-01-30

SMART
AVIONICS

UnclassifiedS1000DXSL-SMART-00001-00

P
ro

du
ce

d
by

: S
m

ar
t A

vi
on

ic
s

Lt
d.

T
hi

s
is

 a
 d

ra
ft

co
py

 o
f i

ss
ue

 0
01

-0
1.

 P
rin

te
d

20
11

-0
1-

30
 1

9:
40

.

	S1000D XSL Stylesheets - README
	1. Introduction
	2. Using the S1000D XSL stylesheets
	3. Requirements
	4. Configuration
	4.1. Configuring the build
	4.2. Catalog configuration
	4.3. Graphics entity map configuration
	4.3.1. Caveats

	5. Cranking the handle
	6. Future work
	7. Acknowledgements
	8. Warranty

